Latest AEpiA news

A look back at Epigenetics 2017

Many thanks to all of you who attended Epigenetics 2017 in Brisbane!

Our flagship scientific meeting was held last October – November in Brisbane, where we enjoyed three days of seminars, posters and lively discussion. It was wonderful to see first hand much of the epigenetics research that’s happening in Australia and overseas.

We are very grateful to our international visitors – in particular, keynote speakers Prof Peter Jones from the Van Andel Research Institute, and Prof Stephen Baylin from John Hopkins University – for travelling to Australia to present some of their latest findings and share many words of wisdom!

We were genuinely impressed by the quality and innovation of the research presented at the meeting – from young students to experienced senior researchers.

We extend warm congratulations to our award winners. We were delighted to present the Young Investigator Award to Qian Du, from Sydney’s Garvan Institute of Medical research, who presented her research on DNA replication timing and the cancer epigenome. Congratulations also to all the Poster Award winners.

Well done to Jason Lee and all of the organising committee for a succesful meeting! Please enjoy the slideshow of photos from the meeting, and we hope to see you in Western Australia for Epigenetics 2019 – watch this space!

Epigentics 2017 award winners:

Young Investigators Award winner:
Qian Du

Poster Award winners:
Braydon Meyer
Christina Ernst
Esmi Zajaczkowaski
Juston Wong
Francesco Casciello
Lochlan Fennell

 – Do you have any research news you would like to share with AEpiA members? Please email us about any recent publications, awards or events!

Australian epigenetics research news Aug – Nov 2017

We thought we’d share some brief highlights of Australian epigenetics publications over the last three months:

Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination

From La Trobe University in Melbourne, Prof Whelan and team have published an insightful study that “reveals the complex dynamics and interactions of the transcriptome and epigenome during seed germination”. The study identifies the epigenomic and transcriptomic changes that Arabodpsis Thaliana seeds undergo as they transition from an embryo-like to vegetative seedling during germination. Further, by generating a transcription factor network model for germination, the authors identify known and novel regulatory factors that drive seed germination. The paper reveals extensive remodelling of the seed DNA methylome during this period of transformation.



Epigenetic targeting of Notch1 driven transcription using the HDACi panobinostat is a potential therapy against T cell acute lymphoblastic leukemia

In a joint effort by the laboratories of Prof Johnstone from the Peter MacCallum Cancer Centre and Dr Hawkins from The Walter and Eliza Hall Institute of Medical Research in Melbourne, Notch 1 signaling has been targeted as a novel therapeutic for T cell acute lymphoblastic leukemia (T-ALL). Using the notch driven T-ALL mouse model the authors investigate the therapeutic possibility of the histone deacetylase inhibitor (HDACi) panobinostat.

The study revealed that the drug was able to regulate T-ALL cellular proliferation, and that this was correlated with a loss of c-Myc expression in these cells. In vivo, Panobinostat treated mice had significantly increased survival compared to vehicle treated control leukemia mouse models.


Grandmaternal smoking increases asthma risk in grandchildren: a nationwide Swedish cohort

A collaborative effort between Umeå University in Sweden, the University of Melbourne and Murdoch Children’s Research Institute in Melbourne published a population-based study on grandmaternal smoking during pregnancy and the risk of asthma in grandchildren. Lodge et. al. interrogated prospectively collected data from the national Swedish registries to reveal that “children aged 1-6 years had an increased asthma risk if their grandmothers had smoked during pregnancy.” The study further confirmed that maternal smoking did not modify this relationship.


H2A.Z and enhancers in prostate cancer

In Nature Communications this month the group of Prof Susan Clark from the Garvan Institute of Medical Research in Sydney published on the role of the histone variant H2A.Z in enhancer activation in prostate cancer. Valdés-Mora et. al. reveal that an increased level of H2A.Z acetylation correlates with poor prognosis in prostate cancer samples. Using prostate cancer cell line models the study shows that androgen receptor associated enhancers require the incorporation of acetylated H2A.Z for activation and that H2A.Zac is mis-localized at active enhancers in cancer.

The study further demonstrates that acetylation of H2A.Z nucleosomes is associated with ectopic gene activation and epigenetic remodeling of cancer-specific regulatory elements. Collectively the study demonstrates a novel contribution of H2A.Zac in the activation of newly formed enhancers in prostate cancer.



DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood

From CSIRO in North Ryde, Sydney Dr Molloy and colleagues address the question of whether “…epigenetic marks present at birth may predict an individual’s future risk of obesity and type 2 diabetes”. For this van Dijk et. al. studied epigenetic marks from blood of newborn children and assessed whether they were associated with body mass index (BMI) and insulin sensitivity in these children later in childhood.In support of growing evidence on the role of epigenetics in programming of metabolic health, the study identified a number of DNA methylation regions at birth that were associated with obesity or insulin sensitivity measurements in childhood. The study also revealed associations between DNA methylation, maternal smoking and birth weight.

 – Do you have any research news you would like to share with AEpiA members? Please email us about any recent publications, awards or events!

Australian epigenetics research news June – July 2017

Some highlights of Australian epigenetics publications in June-July 2017:

Click chemistry enables preclinical evaluation of targeted epigenetic therapies

In this elegant study published in Science, Prof Mark Dawson and his team at the Peter MacCallum Cancer Centre in Melbourne partnered with GlaxoSmithKline to modify the epigenetic-based therapy, BET bromodomain inhibitors, to create functionally conserved compounds that are amenable to click chemistry. The authors describe how adding chemically reactive moieties to amenable click chemistry, while preserving the functional integrity of the small molecule (in this case BET inhibitors), allows these molecules to be used in a similar way to how antibodies are used in cell and molecular biology. The study explored the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors using click proteomics and click sequencing. This approach allowed fluorochromes and/or affinity tags to react with the functionalized drugs in a cellular context and thereby revealed insight into the cellular and molecular mechanisms of the therapy. Using high-resolution microscopy and flow cytometry in an acute leukemia mouse model the authors went on to demonstrate the power of this framework for the preclinical assessment of a wide range of drugs.

Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination

In an Australia-wide collaboration, Prof Arthur Georges and colleagues at the University of Canberra’s Institute for Applied Ecology, the National Research Collections Australia of CSIRO; the Garvan Institute of Medical Research, UNSW Sydney and La Trobe University, explore the fact that “in many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes.” The authors use the unique Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, to probe into this mysterious process. They show intron retention in two Jumonji family genes, JARID2 and JMJD3, and propose that the perturbation of JARID2/JMJD3 function may alter the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Their observation further extends to alligators and turtles, indicating a reptile-wide mechanism for this phenomenon. The findings were published in Science Advances.

Review: DNA methylation and the preservation of cell identity

In June, Current Opinion in Genetics & Development published a review by Dr Ozren Bogdanovic of the Garvan Institute of Medical research in Sydney and ProfRyan Lister of the Harry Perkins Institute of Medical Research in Perth. The review systematically explores the “roles of DNA methylation in the establishment and maintenance of cell identity during development.” The authors bring attention particularly to insights obtained from in vivo studies.

Review: Challenges in defining the role of intron retention in normal biology and disease

From the Centenary Institute at the University of Sydney, Prof John Rasko and colleagues Darya Vanichkina, Ulf Schmitz and Justin Wong discuss the difficulties facing of the newly evolving field of intron retention. The review provides an overview of the challenges of detecting and quantifying retained introns and in determining their effects on cellular phenotype. The authors then highlight approaches that can be used to address these issues.

Review: Epigenetic modulation in cancer immunotherapy

Dr Stuart Gallagher, Dr Elena Shklovskaya and Prof Peter Hersey of the The Centenary Institute, University of Sydney and the Melanoma Institute Australia, in Sydney, review recent findings on epigenetic modulation to improve cancer immunotherapy. They focus on “the inhibitors of the CTLA4 and PD1 immune checkpoints and epigenetic modifiers of histone acetylation and methylation and DNA methylation.” The review was published in Current Opinion in Pharmacology.

G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis

A/Prof Jason Lee from the Queensland Institute of Medical Research (QIMR) in Brisbane led an extensive study on the role of G9a in regulating gene expression in hypoxia. The findings provide “an insight into the role G9a plays as an epigenetic mediator of hypoxic response, which can be used as a diagnostic marker.” The findings demonstrate the potential use of G9a, an epigenetic regulator that methylates H3K9, as a therapeutic target for solid cancers.

Germ line–inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition

Researchers at the Max Planck Institute of Immunobiology and Epigenetics, in Freiburg, Germany have produced a seminal study on the mechanism and consequence of transgenerational epigenetic inheritance. Dr Ozren Bogdanovic, from the Garvan Institute of Medical Research, contributed to the study, which was published in Science last month. Using drosophila as a model system, the researchers elegantly demonstrated that “maternally inherited H3K27me3, propagated in the early embryo, regulates the activation of enhancers and lineage-specific genes during development.” Read more in Garvan news.

 – Do you have any research news you would like to share with AEpiA members? Please email us about any recent publications, awards or events!